Steiner intervals and Steiner geodetic numbers in distance-hereditary graphs
نویسندگان
چکیده
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I (S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S = {u, v}, then I (S) = I [u, v] is called the interval between u and v and consists of all vertices that lie on some shortest u–v path in G. The smallest cardinality of a set S of vertices such that ⋃ u,v∈SI [u, v]=V (G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I (S)= V (G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G) sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph. © 2006 Elsevier B.V. All rights reserved. MSC: primary 05C12; secondary 05C05; 52B40
منابع مشابه
Geodetic and Steiner geodetic sets in 3-Steiner distance hereditary graphs
Let G be a connected graph and S ⊆ V (G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I (S) is the union of all vertices that belong to some Steiner tree for S. If S = {u, v}, then ...
متن کاملNordhaus-Gaddum type results for the Harary index of graphs
The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ ...
متن کاملThe Steiner diameter of a graph
The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the Steiner distance $d(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. Let $...
متن کاملOn the Steiner, geodetic and hull numbers of graphs
Given a graph G and a subset W ⊆ V (G), a Steiner W -tree is a tree of minimum order that contains all of W . Let S(W ) denote the set of all vertices in G that lie on some Steiner W -tree; we call S(W ) the Steiner interval of W . If S(W ) = V (G), then we call W a Steiner set of G. The minimum order of a Steiner set of G is called the Steiner number of G. Given two vertices u, v in G, a short...
متن کاملWeighted Connected Domination and Steiner Trees in Distance-Hereditary Graphs
Distance-hereditary graphs are graphs in which every two vertices have the same distance in every connected induced subgraph containing them. This paper studies distance-hereditary graphs from an algorithmic viewpoint. In particular, we present linear-time algorithms for finding a minimum weighted connected dominating set and a minimum vertex-weighted Steiner tree in a distance-hereditary graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007